Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nuclear monothiol glutaredoxins of Saccharomyces cerevisiae can function as mitochondrial glutaredoxins.

Identifieur interne : 000E67 ( Main/Exploration ); précédent : 000E66; suivant : 000E68

Nuclear monothiol glutaredoxins of Saccharomyces cerevisiae can function as mitochondrial glutaredoxins.

Auteurs : María Micaela Molina [Espagne] ; Gemma Bellí ; María Angeles De La Torre ; María Teresa Rodríguez-Manzaneque ; Enrique Herrero

Source :

RBID : pubmed:15456753

Descripteurs français

English descriptors

Abstract

Glutaredoxins are thiol oxidoreductases that regulate protein redox state. In Saccharomyces cerevisiae, Grx1 and Grx2 are cytosolic dithiol glutaredoxins, whereas Grx3, Grx4, and Grx5 are monothiol glutaredoxins. Grx5 locates at the mitochondrial matrix and is needed for iron/sulfur cluster biogenesis. Its absence causes phenotypes such as inactivation of iron/sulfur enzymes and sensitivity to oxidative stress. Whereas Grx5 contains a single glutaredoxin domain, in Grx3 and Grx4 a thioredoxin-like domain is fused to the glutaredoxin domain. Here we have shown that Grx3 locates at the nucleus and that the thioredoxin-like domain is required for such location. We have addressed the functional divergence among glutaredoxins by targeting Grx2/3/4 molecules to the mitochondrial matrix using the Grx5 targeting sequence. The mitochondrial forms of Grx3 and Grx4 partially rescue the defects of a grx5 null mutant. On the contrary, mitochondrially targeted Grx2 does not suppress the mutant phenotype. Both the thioredoxin-like and glutaredoxin domains are needed for the mitochondrial activity of Grx3, although none of the cysteine residues at the thioredoxin-like domain is required for rescue of the grx5 phenotypes. We have concluded that dithiol glutaredoxins are functionally divergent from monothiol ones, but the latter can interchange their biological activities when compartment barriers are surpassed.

DOI: 10.1074/jbc.M410219200
PubMed: 15456753


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nuclear monothiol glutaredoxins of Saccharomyces cerevisiae can function as mitochondrial glutaredoxins.</title>
<author>
<name sortKey="Molina, Maria Micaela" sort="Molina, Maria Micaela" uniqKey="Molina M" first="María Micaela" last="Molina">María Micaela Molina</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Montserrat Roig 2, 25008-Lleida, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Montserrat Roig 2, 25008-Lleida</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Belli, Gemma" sort="Belli, Gemma" uniqKey="Belli G" first="Gemma" last="Bellí">Gemma Bellí</name>
</author>
<author>
<name sortKey="De La Torre, Maria Angeles" sort="De La Torre, Maria Angeles" uniqKey="De La Torre M" first="María Angeles" last="De La Torre">María Angeles De La Torre</name>
</author>
<author>
<name sortKey="Rodriguez Manzaneque, Maria Teresa" sort="Rodriguez Manzaneque, Maria Teresa" uniqKey="Rodriguez Manzaneque M" first="María Teresa" last="Rodríguez-Manzaneque">María Teresa Rodríguez-Manzaneque</name>
</author>
<author>
<name sortKey="Herrero, Enrique" sort="Herrero, Enrique" uniqKey="Herrero E" first="Enrique" last="Herrero">Enrique Herrero</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15456753</idno>
<idno type="pmid">15456753</idno>
<idno type="doi">10.1074/jbc.M410219200</idno>
<idno type="wicri:Area/Main/Corpus">000E46</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000E46</idno>
<idno type="wicri:Area/Main/Curation">000E46</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000E46</idno>
<idno type="wicri:Area/Main/Exploration">000E46</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Nuclear monothiol glutaredoxins of Saccharomyces cerevisiae can function as mitochondrial glutaredoxins.</title>
<author>
<name sortKey="Molina, Maria Micaela" sort="Molina, Maria Micaela" uniqKey="Molina M" first="María Micaela" last="Molina">María Micaela Molina</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Montserrat Roig 2, 25008-Lleida, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Montserrat Roig 2, 25008-Lleida</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Belli, Gemma" sort="Belli, Gemma" uniqKey="Belli G" first="Gemma" last="Bellí">Gemma Bellí</name>
</author>
<author>
<name sortKey="De La Torre, Maria Angeles" sort="De La Torre, Maria Angeles" uniqKey="De La Torre M" first="María Angeles" last="De La Torre">María Angeles De La Torre</name>
</author>
<author>
<name sortKey="Rodriguez Manzaneque, Maria Teresa" sort="Rodriguez Manzaneque, Maria Teresa" uniqKey="Rodriguez Manzaneque M" first="María Teresa" last="Rodríguez-Manzaneque">María Teresa Rodríguez-Manzaneque</name>
</author>
<author>
<name sortKey="Herrero, Enrique" sort="Herrero, Enrique" uniqKey="Herrero E" first="Enrique" last="Herrero">Enrique Herrero</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aconitate Hydratase (metabolism)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Base Sequence (MeSH)</term>
<term>Cell Nucleus (enzymology)</term>
<term>DNA, Fungal (genetics)</term>
<term>Genes, Fungal (MeSH)</term>
<term>Glutaredoxins (MeSH)</term>
<term>Malate Dehydrogenase (metabolism)</term>
<term>Mitochondria (enzymology)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Oxidoreductases (chemistry)</term>
<term>Oxidoreductases (genetics)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Phenotype (MeSH)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (growth & development)</term>
<term>Saccharomyces cerevisiae Proteins (chemistry)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN fongique (génétique)</term>
<term>Aconitate hydratase (métabolisme)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Glutarédoxines (MeSH)</term>
<term>Gènes fongiques (MeSH)</term>
<term>Malate dehydrogenase (métabolisme)</term>
<term>Mitochondries (enzymologie)</term>
<term>Mutation (MeSH)</term>
<term>Noyau de la cellule (enzymologie)</term>
<term>Oxidoreductases (composition chimique)</term>
<term>Oxidoreductases (génétique)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Phénotype (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (composition chimique)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Saccharomyces cerevisiae (croissance et développement)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Oxidoreductases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Fungal</term>
<term>Oxidoreductases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Aconitate Hydratase</term>
<term>Malate Dehydrogenase</term>
<term>Oxidoreductases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Oxidoreductases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Mitochondries</term>
<term>Noyau de la cellule</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Cell Nucleus</term>
<term>Mitochondria</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN fongique</term>
<term>Oxidoreductases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Aconitate hydratase</term>
<term>Malate dehydrogenase</term>
<term>Oxidoreductases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Base Sequence</term>
<term>Genes, Fungal</term>
<term>Glutaredoxins</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Phenotype</term>
<term>Protein Structure, Tertiary</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Glutarédoxines</term>
<term>Gènes fongiques</term>
<term>Mutation</term>
<term>Phénotype</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glutaredoxins are thiol oxidoreductases that regulate protein redox state. In Saccharomyces cerevisiae, Grx1 and Grx2 are cytosolic dithiol glutaredoxins, whereas Grx3, Grx4, and Grx5 are monothiol glutaredoxins. Grx5 locates at the mitochondrial matrix and is needed for iron/sulfur cluster biogenesis. Its absence causes phenotypes such as inactivation of iron/sulfur enzymes and sensitivity to oxidative stress. Whereas Grx5 contains a single glutaredoxin domain, in Grx3 and Grx4 a thioredoxin-like domain is fused to the glutaredoxin domain. Here we have shown that Grx3 locates at the nucleus and that the thioredoxin-like domain is required for such location. We have addressed the functional divergence among glutaredoxins by targeting Grx2/3/4 molecules to the mitochondrial matrix using the Grx5 targeting sequence. The mitochondrial forms of Grx3 and Grx4 partially rescue the defects of a grx5 null mutant. On the contrary, mitochondrially targeted Grx2 does not suppress the mutant phenotype. Both the thioredoxin-like and glutaredoxin domains are needed for the mitochondrial activity of Grx3, although none of the cysteine residues at the thioredoxin-like domain is required for rescue of the grx5 phenotypes. We have concluded that dithiol glutaredoxins are functionally divergent from monothiol ones, but the latter can interchange their biological activities when compartment barriers are surpassed.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15456753</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>02</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2007</Year>
<Month>11</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0021-9258</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>279</Volume>
<Issue>50</Issue>
<PubDate>
<Year>2004</Year>
<Month>Dec</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Nuclear monothiol glutaredoxins of Saccharomyces cerevisiae can function as mitochondrial glutaredoxins.</ArticleTitle>
<Pagination>
<MedlinePgn>51923-30</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Glutaredoxins are thiol oxidoreductases that regulate protein redox state. In Saccharomyces cerevisiae, Grx1 and Grx2 are cytosolic dithiol glutaredoxins, whereas Grx3, Grx4, and Grx5 are monothiol glutaredoxins. Grx5 locates at the mitochondrial matrix and is needed for iron/sulfur cluster biogenesis. Its absence causes phenotypes such as inactivation of iron/sulfur enzymes and sensitivity to oxidative stress. Whereas Grx5 contains a single glutaredoxin domain, in Grx3 and Grx4 a thioredoxin-like domain is fused to the glutaredoxin domain. Here we have shown that Grx3 locates at the nucleus and that the thioredoxin-like domain is required for such location. We have addressed the functional divergence among glutaredoxins by targeting Grx2/3/4 molecules to the mitochondrial matrix using the Grx5 targeting sequence. The mitochondrial forms of Grx3 and Grx4 partially rescue the defects of a grx5 null mutant. On the contrary, mitochondrially targeted Grx2 does not suppress the mutant phenotype. Both the thioredoxin-like and glutaredoxin domains are needed for the mitochondrial activity of Grx3, although none of the cysteine residues at the thioredoxin-like domain is required for rescue of the grx5 phenotypes. We have concluded that dithiol glutaredoxins are functionally divergent from monothiol ones, but the latter can interchange their biological activities when compartment barriers are surpassed.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Molina</LastName>
<ForeName>María Micaela</ForeName>
<Initials>MM</Initials>
<AffiliationInfo>
<Affiliation>Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Montserrat Roig 2, 25008-Lleida, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bellí</LastName>
<ForeName>Gemma</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>de la Torre</LastName>
<ForeName>María Angeles</ForeName>
<Initials>MA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rodríguez-Manzaneque</LastName>
<ForeName>María Teresa</ForeName>
<Initials>MT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Herrero</LastName>
<ForeName>Enrique</ForeName>
<Initials>E</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2004</Year>
<Month>09</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004271">DNA, Fungal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516012">Grx4 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.1.37</RegistryNumber>
<NameOfSubstance UI="D008291">Malate Dehydrogenase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.2.1.3</RegistryNumber>
<NameOfSubstance UI="D000154">Aconitate Hydratase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000154" MajorTopicYN="N">Aconitate Hydratase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004271" MajorTopicYN="N">DNA, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005800" MajorTopicYN="N">Genes, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008291" MajorTopicYN="N">Malate Dehydrogenase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>2</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15456753</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M410219200</ArticleId>
<ArticleId IdType="pii">M410219200</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
</country>
<region>
<li>Catalogne</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Belli, Gemma" sort="Belli, Gemma" uniqKey="Belli G" first="Gemma" last="Bellí">Gemma Bellí</name>
<name sortKey="De La Torre, Maria Angeles" sort="De La Torre, Maria Angeles" uniqKey="De La Torre M" first="María Angeles" last="De La Torre">María Angeles De La Torre</name>
<name sortKey="Herrero, Enrique" sort="Herrero, Enrique" uniqKey="Herrero E" first="Enrique" last="Herrero">Enrique Herrero</name>
<name sortKey="Rodriguez Manzaneque, Maria Teresa" sort="Rodriguez Manzaneque, Maria Teresa" uniqKey="Rodriguez Manzaneque M" first="María Teresa" last="Rodríguez-Manzaneque">María Teresa Rodríguez-Manzaneque</name>
</noCountry>
<country name="Espagne">
<region name="Catalogne">
<name sortKey="Molina, Maria Micaela" sort="Molina, Maria Micaela" uniqKey="Molina M" first="María Micaela" last="Molina">María Micaela Molina</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E67 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E67 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15456753
   |texte=   Nuclear monothiol glutaredoxins of Saccharomyces cerevisiae can function as mitochondrial glutaredoxins.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15456753" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020